Extensions 1→N→G→Q→1 with N=C3×D9 and Q=C32

Direct product G=N×Q with N=C3×D9 and Q=C32
dρLabelID
D9×C33162D9xC3^3486,220

Semidirect products G=N:Q with N=C3×D9 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3×D9)⋊C32 = C32×C9⋊C6φ: C32/C3C3 ⊆ Out C3×D954(C3xD9):C3^2486,224

Non-split extensions G=N.Q with N=C3×D9 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3×D9).1C32 = C3×C9⋊C18φ: C32/C3C3 ⊆ Out C3×D954(C3xD9).1C3^2486,96
(C3×D9).2C32 = C9×C9⋊C6φ: C32/C3C3 ⊆ Out C3×D9546(C3xD9).2C3^2486,100
(C3×D9).3C32 = D9⋊He3φ: C32/C3C3 ⊆ Out C3×D9546(C3xD9).3C3^2486,106
(C3×D9).4C32 = D9⋊3- 1+2φ: C32/C3C3 ⊆ Out C3×D9546(C3xD9).4C3^2486,108
(C3×D9).5C32 = C927C6φ: C32/C3C3 ⊆ Out C3×D9546(C3xD9).5C3^2486,109
(C3×D9).6C32 = C928C6φ: C32/C3C3 ⊆ Out C3×D9186(C3xD9).6C3^2486,110
(C3×D9).7C32 = D9×C3×C9φ: trivial image54(C3xD9).7C3^2486,91
(C3×D9).8C32 = D9×He3φ: trivial image546(C3xD9).8C3^2486,99
(C3×D9).9C32 = D9×3- 1+2φ: trivial image546(C3xD9).9C3^2486,101

׿
×
𝔽